Machine learning - KAIE9M15

  • Number of hours

    • Lectures 12.0
    • Projects -
    • Tutorials -
    • Internship -
    • Laboratory works 36.0
    • Written tests -

    ECTS

    ECTS 0.4

Goal(s)

Discover automatic learning algorithms and be able to implement them effectively on concrete problems.

Content(s)

Chapter 1 :

  • Bayesian learning (learning by estimating probability densities): linear or quadratic classifiers, kppV,...
  • Evaluation of a decision system, Comparison of algorithm performance
  • The choice of the representation space

Chapter 2: Learning by direct border calculation (learning by optimization): neural networks, SVM, introduction to deep learning (CNN)

Chapter 3: Decision trees (learning by combining decisions): induction of decision trees (C4.5, CART...), random forest

Chapter 4: Unsupervised classification (learning by similarity): CAH, k-means, GMM

Test

EXAM, SOUT

Calendar

The course exists in the following branches:

  • Curriculum - IESE - Semester 9

Additional Information

Course ID : KAIE9M15
Course language(s): FR

You can find this course among all other courses.

Bibliography

Statistical pattern recognition K. Fukunaga, Academic Press

Decision, estimation and classification ? An introduction to pattern recognition and related topics, C. Therrien, Wiley

Diagnostic et reconnaissance de formes, B. Dubuisson, Hermes

Kernel methods for pattern analysis, J. Shawe-Taylor, N. Christianini, Cambridge university press

An introduction to support vector machines and other kernel-based learning methods, N. Christianini, J. Shawe-Taylor, Cambridge university press

Réseaux neuronaux, JP; Bernard, Vuibert

Graphes d?induction, Apprentissage et data-mining, D. Zighed et R. Rakotomalala, Hermes

Learning and soft computing, V. Kecman, MIT Press
Apprentissage artificiel, concepts et algorithmes, A. Cornuejols, L. Miclet, Eyrolles
Apprentissage artificiel: Deep learning, concepts et algorithmes Vincent Barra , Laurent Miclet; A. Cornuejols, L. Miclet, Eyrolles
Bases théoriques pour l?apprentissage et la reconnaissances des formes, A. de Beauville, F.Z. Kettaf, Cépadues